Showing posts with label rockets. Show all posts
Showing posts with label rockets. Show all posts

For Phyl: Space Elevators

>> Thursday, March 18, 2010


Phyl asked (some time ago - sorry I took so long): What do you think of that "elevator" idea of getting off the earth?

I'm glad you asked. In short, not much. Now, after waiting so long, you deserve a better answer than that, and you'll get it, but I thought I'd cut to the chase.

The idea, for those of you who aren't familiar with it, is that one could construct a cabling system that reach all the way out to geosynchronous orbit, a point that would rotate directly overhead at the equator. You'd need a substantial mass on the other side to balance the total (cable and slide(s)) going down to the surface so that the center of gravity would stay at geosynchronous. z

If you could construct this, the idea goes, you could just ride an elevator up to orbit without requiring rockets and such-like, bringing yourself to orbital velocity and making it far easier to launch stuff out into outer space.

If it worked.

The general thought, for those excited by this notion, is that, if we could just get a material strong to take bear 36,000 km of its own weight but light enough not to make the amount of mass required above geosynchronous less than onerous, this would be workable. Nanotubes look promising, but they're only microscopic so far. Putting them in a resin matrix or whatever drastically reduces their strength. (I could tell you the ridiculously high strength they need but it won't mean much to most of you: 65–130 GPa tensile strength. Kevlar gets up to ~4, most steel is <2 and quartz gets up to 20).

You'll have to pardon me if I seem skeptical. Say you solved all your material problems and ended up with a cable that only weighed, say 500 metric tons. A 13mm kevlar rope 38,000 km long weighs more than 3240 metric tons. That's a bit less than 10X the mass of the ISS sent far far higher, geostationary.

The first question that comes to my mind is, if you need to send three million metric tons into high orbit to get this up and running, what exactly are you saving on rockets later? Once I've fired 10 station's worth of hardware up there, I might as well have just launched from the ground. And, even having all of this in space doesn't change how much energy you need to put into the system. To get into geostationary orbit, even via elevator, requires the same amount of energy to raise the potential and increase the speed.

You can't get something for nothing. You have to put energy into whatever you put into orbit to get it there. A lot of energy. If you use the energy of the elevator to pull it up, you will slow down the elevator and/or lower the orbit.

Truth is, I just don't like it. I don't think we're close to this and, if we can do it, I'm not sure it will buy us as much as we think it will.

Truthfully, if I was going to look for something to help us get into orbit without pure rockets, I'd be looking for an electrodynamic rail system to launch something to several times the speed of sound and then just use a rocket to kick it up the rest of the way. In this way, without rockets, one could take great masses up fairly high (perhaps put the rail up a mountain) and accelerate it at a controlled rate over a long distance. Still uses energy, of course; can't get away from that. You also have a large infrastructure to build, but it's built here on earth where that's relatively easy. And you can use methods we've already used. The US Navy has built a rail gun capable of accelerating a 3.2 kg projectile to Mach 7. It's only a matter of scale to make it do more.

Hope that helps.

Read more...

For Jeff King: Rocket Fuel

>> Wednesday, October 7, 2009


Jeff King asked: What alternative rocket fuel do we have to look forward to, to help our stagnate space program to take the next big leap?

I don't know that new fuels are the key. With all our technologies, hydrogen/oxygen are still the most efficient of rocket fuels, but cryogenic support systems are expensive, complex and prone to failure. H/O and hypergolics (like hydrazine) dominate here in the US. Russia has an amazing launch record using almost exclusively kerosene-based rocket fuels (which have the advantages of liquid based throttle-ability without the problems of cryogenics). Hydrogen peroxide has also been touted as potential fuel.

But most if not all of the fuels we're talking about are effectively the same ones from 40 years ago. When it comes to lifting off the planet, we're still using traditional methods. However, once you're in orbit (or a transition orbit), there are alternate methods of propulsion, like for interplanetary travel, that move beyond the traditional fuels.

Among the possible methods of propulsion that have potential, however, there are several nuclear possibilities, including using radioisotope rocket, electric propulsion, and solar sails.

Read more...
Blog Makeover by LadyJava Creations